If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=14
We move all terms to the left:
d2-(14)=0
We add all the numbers together, and all the variables
d^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 414=1.5b | | -4+20m=-6+5m+2 | | 3q-2=-5 | | 25.20=1.05b | | q/4+4=-1 | | 4{b+7}=56 | | r−33=9 | | 89-(5x-6)-57=x | | h+17=37 | | q/2+3=6 | | n+55=105 | | 39-(11x+11)-31=x | | Y=360-xY=2x=3x | | -10q+5=5-10q | | (19x-5)x=4 | | 4(x-1)=4- | | 4x2-19x-23=0 | | 3x-40+50+90+x=360 | | (4x-18)-45-45=x | | 42.40=1.06b | | t/9-7=-6 | | 2(3x-1)+2=-24 | | 3x/8+1=-3 | | 7n+12=8 | | -9-3c=-3c-9 | | 0.2x-0.3=2.1 | | -3-k=-3k-1 | | 150=-50x+750 | | 48+4x=90 | | 0.12(2y-3)=0.15(y+4) | | 17-0.8x=47 | | 34x-16=16x+20 |