If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=3200
We move all terms to the left:
d2-(3200)=0
We add all the numbers together, and all the variables
d^2-3200=0
a = 1; b = 0; c = -3200;
Δ = b2-4ac
Δ = 02-4·1·(-3200)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*1}=\frac{0-80\sqrt{2}}{2} =-\frac{80\sqrt{2}}{2} =-40\sqrt{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*1}=\frac{0+80\sqrt{2}}{2} =\frac{80\sqrt{2}}{2} =40\sqrt{2} $
| x-3/11=7/4 | | x/3+9=1 | | 28-16=3(x-3) | | 2(x+1)(x-1)-(2x+3)(x2)=0 | | 6.2y-3=0 | | 3(x+5)+19=-2 | | 7x−15=33 | | 0.07*2^x=0.3 | | 3x-3=5x-26 | | -2x+(-13)=11 | | x^2+8x-3600=0 | | x^2-15x+105=0 | | 4x-2+2x+14=42 | | 8-7x=13x-8 | | 6-4w=22 | | 2t=8+6 | | 79=7v+9 | | 8x+1+26x-13=180 | | 18+3p=6+6p | | 3=(w/6)-2 | | 3=w/6-2 | | -6(x+1)=48 | | 3x-1+1=10x-15+1 | | F(x)=-5x^2+50x-135 | | 8(x+1)-3(x+4)=7(2-x | | 7(3-x)=7(4-2x) | | x-4=45/5 | | 7x+4=9x-26 | | -10y^2+7y+12=0 | | 7x-4+5x-8=180 | | -4n+16=-3n-11 | | 45/16+3/2n=7/4-19/16 |