Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
((3*x-5)/(5*x-4))'The calculation above is a derivative of the function f (x)
((3*x-5)'*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
(((3*x)'+(-5)')*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
((3*(x)'+(3)'*x+(-5)')*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
((3*(x)'+0*x+(-5)')*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
((0*x+3*1+(-5)')*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
((0+3)*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*(5*x-4)'))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*((5*x)'+(-4)')))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*(5*(x)'+(5)'*x+(-4)')))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*(5*(x)'+0*x+(-4)')))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*(0*x+5*1+(-4)')))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*(0+5)))/((5*x-4)^2)
(3*(5*x-4)-((3*x-5)*5))/((5*x-4)^2)
(3*(5*x-4)-(5*(3*x-5)))/((5*x-4)^2)
| Derivative of 2x-4/2x-3 | | Derivative of 12cos(x)^3 | | Derivative of 100s^2-196 | | Derivative of 8sin(x)-8x | | Derivative of ln(11x^6) | | Derivative of x*e^(x/6) | | Derivative of e^(x/6) | | Derivative of x^2/(x^4-2x^2) | | Derivative of (4x)^sin(3x) | | Derivative of x-0.01x^2 | | Derivative of (2*cos(3*t)) | | Derivative of (cos(x))(sin(x))^4 | | Derivative of (e^(2x))/(tan(7x)) | | Derivative of e^2x/(tan(7x)) | | Derivative of sin((2pi)x) | | Derivative of 2^t | | Derivative of 3^t | | Derivative of 10e | | Derivative of 8e^t | | Derivative of 5/(2x-3)^4 | | Derivative of (1-3e^x)^2 | | Derivative of x^8-x^1/2 | | Derivative of 2/(t^3) | | Derivative of (ln(5x))^3 | | Derivative of 14ln(x/8) | | Derivative of (tan(5x))(tan(5x)) | | Derivative of -9x^2-5x | | Derivative of x^(1/3)-10^-1 | | Derivative of 40/x^7 | | Derivative of 1/(ln(6x)) | | Derivative of 5pi/2 | | Derivative of 5sin(2x/5) |