Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(12*cos(2*x)-(4*sin(2*x)))'The calculation above is a derivative of the function f (x)
(12*cos(2*x))'+(-(4*sin(2*x)))'
(12)'*cos(2*x)+12*(cos(2*x))'+(-(4*sin(2*x)))'
0*cos(2*x)+12*(cos(2*x))'+(-(4*sin(2*x)))'
0*cos(2*x)+12*-sin(2*x)*(2*x)'+(-(4*sin(2*x)))'
0*cos(2*x)+12*-sin(2*x)*((2)'*x+2*(x)')+(-(4*sin(2*x)))'
0*cos(2*x)+12*-sin(2*x)*(0*x+2*(x)')+(-(4*sin(2*x)))'
0*cos(2*x)+12*-sin(2*x)*(0*x+2*1)+(-(4*sin(2*x)))'
0*cos(2*x)+12*2*(-sin(2*x))+(-(4*sin(2*x)))'
0*cos(2*x)+12*-2*sin(2*x)+(-(4*sin(2*x)))'
(4)'*sin(2*x)-24*sin(2*x)+4*(sin(2*x))'
0*sin(2*x)-24*sin(2*x)+4*(sin(2*x))'
0*sin(2*x)-24*sin(2*x)+4*cos(2*x)*(2*x)'
0*sin(2*x)-24*sin(2*x)+4*cos(2*x)*((2)'*x+2*(x)')
0*sin(2*x)-24*sin(2*x)+4*cos(2*x)*(0*x+2*(x)')
0*sin(2*x)-24*sin(2*x)+4*cos(2*x)*(0*x+2*1)
0*sin(2*x)-24*sin(2*x)+4*2*cos(2*x)
-24*sin(2*x)-(8*cos(2*x))
| Derivative of 2cos(2x)+6sin(2x) | | Derivative of cos(6*X) | | Derivative of 2*cos(6*X) | | Derivative of 5/10x3 | | Derivative of 5/10x3+3/4x2+1/2x-3/7 | | Derivative of 5/10x^3 | | Derivative of x^3+27 | | Derivative of (x^11-2)^3 | | Derivative of (ln(2/x)) | | Derivative of (x^2+19x-5)^1/2 | | Derivative of 2x^7 | | Derivative of 3e^-5x | | Derivative of (Sin(3x^2+7))^4 | | Derivative of (6x-cos(x^2))^(1/2) | | Derivative of 5x+y | | Derivative of cos(x)7e^x | | Derivative of e^(2x)ln(x) | | Derivative of 8ln(4x) | | Derivative of 3cos(x^3) | | Derivative of 1/x^(19/2) | | Derivative of 1/x^(3/2) | | Derivative of (1/x^3)^2 | | Derivative of 8*cos(x^2)-(16*x^2*sin(x^2)) | | Derivative of 8x*cos(x^2) | | Derivative of e^((cos(x))^-1) | | Derivative of (x^2)*(sin(x))^2 | | Derivative of (((x^8)+1)^9+x)^9 | | Derivative of 4e^1/2x | | Derivative of (6^(1/2))/x^4 | | Derivative of 4e^(x+1)+e^1 | | Derivative of 5k-3(2-k)-2(k-5-2) | | Derivative of sin(x^-2)cos(x^-4)tan(x^3) |