Derivative of 2*cos(2*x)*cos(x)-(sin(x)*sin(2*x))

Derivative of 2*cos(2*x)*cos(x)-(sin(x)*sin(2*x)). Simple step by step solution, to learn. Simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.

If it's not what You are looking for type in the derivative calculator your own function and let us solve it.

Derivative of 2*cos(2*x)*cos(x)-(sin(x)*sin(2*x)):


(2*cos(2*x)*cos(x)-(sin(x)*sin(2*x)))'

(2*cos(2*x)*cos(x))'+(-(sin(x)*sin(2*x)))'

(2*cos(2*x))'*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

((2)'*cos(2*x)+2*(cos(2*x))')*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*(cos(2*x))')*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*-sin(2*x)*(2*x)')*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*-sin(2*x)*((2)'*x+2*(x)'))*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*-sin(2*x)*(0*x+2*(x)'))*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*-sin(2*x)*(0*x+2*1))*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*2*(-sin(2*x)))*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

(0*cos(2*x)+2*-2*sin(2*x))*cos(x)+2*cos(2*x)*(cos(x))'+(-(sin(x)*sin(2*x)))'

2*cos(2*x)*(cos(x))'-4*sin(2*x)*cos(x)+(-(sin(x)*sin(2*x)))'

2*cos(2*x)*(-sin(x))-4*sin(2*x)*cos(x)+(-(sin(x)*sin(2*x)))'

(sin(x))'*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*(sin(2*x))'

cos(x)*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*(sin(2*x))'

cos(x)*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*cos(2*x)*(2*x)'

cos(x)*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*cos(2*x)*((2)'*x+2*(x)')

cos(x)*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*cos(2*x)*(0*x+2*(x)')

cos(x)*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*cos(2*x)*(0*x+2*1)

cos(x)*sin(2*x)-4*sin(2*x)*cos(x)-2*sin(x)*cos(2*x)+sin(x)*2*cos(2*x)

-4*sin(x)*cos(2*x)-(4*sin(2*x)*cos(x))-(cos(x)*sin(2*x))

The calculation above is a derivative of the function f (x)

See similar equations:

| Derivative of 6t-8t^2 | | Derivative of x^6/30 | | Derivative of -2cos(x)^2 | | Derivative of 1/2*e^2x | | Derivative of 1/2e^2x | | Derivative of 6cos(9x) | | Derivative of cos(2*pi*f*x) | | Derivative of 75x-x^2/10 | | Derivative of (x^2)*(e^(2)x) | | Derivative of (x^2)*e^2x | | Derivative of x^2*e^2x | | Derivative of x*e^2x | | Derivative of (1/(x^0.5)) | | Derivative of 27^3 | | Derivative of ln(1/9x^9) | | Derivative of e^(0.1x) | | Derivative of (2/ln(2*x)-(2*ln(ln(2*x))))/(4*x^2) | | Derivative of 2500/x | | Derivative of (x-1)ln(x) | | Derivative of 9x^2/ln(x) | | Derivative of 200x/3 | | Derivative of 220x/3 | | Derivative of ln(ln(2x))/(2x) | | Derivative of 1/2e^-x | | Derivative of e^-x2 | | Derivative of 9*ln(7/x) | | Derivative of ln(x)^6 | | Derivative of E^6(0) | | Derivative of 6e^-2x3-2 | | Derivative of 2*x*e^x | | Derivative of (2x)(e^x) | | Derivative of 1/5x-1 |

Equations solver categories