Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(3000*sin((pi*x)/20))'The calculation above is a derivative of the function f (x)
(3000)'*sin((pi*x)/20)+3000*(sin((pi*x)/20))'
0*sin((pi*x)/20)+3000*(sin((pi*x)/20))'
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*((pi*x)/20)'
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*(((pi*x)'*20-(pi*x*(20)'))/(20^2))
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*((((pi)'*x+pi*(x)')*20-(pi*x*(20)'))/(20^2))
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*(((0*x+pi*(x)')*20-(pi*x*(20)'))/(20^2))
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*(((0*x+pi*1)*20-(pi*x*(20)'))/(20^2))
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*((pi*20-(pi*x*(20)'))/(20^2))
0*sin((pi*x)/20)+3000*cos((pi*x)/20)*((pi*20-(pi*x*0))/(20^2))
0*sin((pi*x)/20)+3000*(pi/20)*cos((pi*x)/20)
0*sin((pi*x)/20)+3000*((pi*cos((pi*x)/20))/20)
150*pi*cos((pi*x)/20)
| Derivative of pi*x/20 | | Derivative of e^(-3ln(60-x)) | | Derivative of 0.95^(-t) | | Derivative of ((pi/4)(t)) | | Derivative of (ln(2x))^3x | | Derivative of 100e^-0.5t | | Derivative of ln(3*(x^2)-2)/(2-(x^2)) | | Derivative of 2cos(pi)x | | Derivative of e^(2(X)^2) | | Derivative of -2^0.5x | | Derivative of ln(sin(e^cos(x))) | | Derivative of (-10*pi*cos((10*pi)/x))/(x^2) | | Derivative of 1/12*e^12x | | Derivative of E^(1/2)-1 | | Derivative of Tan(x/5) | | Derivative of 6x^4*e^-3x | | Derivative of 5ln(30x) | | Derivative of (X^2)/(y^2) | | Derivative of -4x^4 | | Derivative of E^(5.3-0.4x) | | Derivative of -(2/x^2) | | Derivative of 2x3/4 | | Derivative of x*cos(6x) | | Derivative of X^10/11 | | Derivative of 6.687(0.931)^x | | Derivative of Cos(x)-x-(pi)/2 | | Derivative of 1/ln(2-x) | | Derivative of e^(6ln(x)) | | Derivative of e^(6ln(2x)) | | Derivative of e^(ln(2)) | | Derivative of e^(6ln(2x^2)) | | Derivative of (e^(4x))/4 |