Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(8*cos((pi*x)/6))'The calculation above is a derivative of the function f (x)
(8)'*cos((pi*x)/6)+8*(cos((pi*x)/6))'
0*cos((pi*x)/6)+8*(cos((pi*x)/6))'
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*((pi*x)/6)'
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*(((pi*x)'*6-(pi*x*(6)'))/(6^2))
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*((((pi)'*x+pi*(x)')*6-(pi*x*(6)'))/(6^2))
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*(((0*x+pi*(x)')*6-(pi*x*(6)'))/(6^2))
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*(((0*x+pi*1)*6-(pi*x*(6)'))/(6^2))
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*((pi*6-(pi*x*(6)'))/(6^2))
0*cos((pi*x)/6)+8*-sin((pi*x)/6)*((pi*6-(pi*x*0))/(6^2))
0*cos((pi*x)/6)+8*(pi/6)*(-sin((pi*x)/6))
0*cos((pi*x)/6)+8*((-(pi*sin((pi*x)/6)))/6)
(-4/3)*pi*sin((pi*x)/6)
| Derivative of 1/(2-x) | | Derivative of 10*2^x | | Derivative of 1/(12-x) | | Derivative of (2x)^(1/3) | | Derivative of 100/q | | Derivative of -3sin(2y)sin(3x) | | Derivative of 2cos(2y)cos(3x) | | Derivative of -3sin(2x)sin(3y) | | Derivative of 2cos(2x)cos(3y) | | Derivative of sin(2y)cos(3x) | | Derivative of sin(2x)cos(3y) | | Derivative of ln((x^(3)-4)/(x)) | | Derivative of Sin(2y-x) | | Derivative of 3*x*sin(2x-pi)^3 | | Derivative of x*sin(x)-(4*cos(x)) | | Derivative of -3*sin(x)-(x*cos(x)) | | Derivative of 2*cos(x)-(x*sin(x)) | | Derivative of (2*sin(3*x)) | | Derivative of (2*sin(3*t)) | | Derivative of ln(x^100) | | Derivative of 50^(-x) | | Derivative of 6x^(3/2) | | Derivative of (3sin(5x))(tan(5x)) | | Derivative of (16x)/((x^2)^2) | | Derivative of 2sin(pi*x-y)-y | | Derivative of 10cos(3sin(100x)) | | Derivative of 10cos(3sin(100t)) | | Derivative of 18-18e^-x | | Derivative of sin(2x-2) | | Derivative of sin(2x-y) | | Derivative of (100t)*(e^(-2t)) | | Derivative of 100t*e^(-2t) |