Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(sin(12*x)/sin(5*x))'The calculation above is a derivative of the function f (x)
((sin(12*x))'*sin(5*x)-(sin(12*x)*(sin(5*x))'))/((sin(5*x))^2)
(cos(12*x)*(12*x)'*sin(5*x)-(sin(12*x)*(sin(5*x))'))/((sin(5*x))^2)
(cos(12*x)*((12)'*x+12*(x)')*sin(5*x)-(sin(12*x)*(sin(5*x))'))/((sin(5*x))^2)
(cos(12*x)*(0*x+12*(x)')*sin(5*x)-(sin(12*x)*(sin(5*x))'))/((sin(5*x))^2)
(cos(12*x)*(0*x+12*1)*sin(5*x)-(sin(12*x)*(sin(5*x))'))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(sin(12*x)*(sin(5*x))'))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(sin(12*x)*cos(5*x)*(5*x)'))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(sin(12*x)*cos(5*x)*((5)'*x+5*(x)')))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(sin(12*x)*cos(5*x)*(0*x+5*(x)')))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(sin(12*x)*cos(5*x)*(0*x+5*1)))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(sin(12*x)*5*cos(5*x)))/((sin(5*x))^2)
(12*cos(12*x)*sin(5*x)-(5*cos(5*x)*sin(12*x)))/((sin(5*x))^2)
| Derivative of 1/2tan(3x) | | Derivative of (x)^16 | | Derivative of 4*pi*r^2 | | Derivative of 2e^2.4 | | Derivative of e^2x-3 | | Derivative of 6sin(sin(x)) | | Derivative of 25x-8e^x | | Derivative of 1.3*0.8^x | | Derivative of 1.3*0.8^z | | Derivative of 40(X^0.25) | | Derivative of 10-q/1000 | | Derivative of tan((x^2)) | | Derivative of 20cos(x)sin(x) | | Derivative of ln(20-x^3) | | Derivative of (x^2)/36 | | Derivative of 4x^2(sin(x))(tan(x)) | | Derivative of 3sin(x)/5-6sin(x) | | Derivative of 2*x*cos(x) | | Derivative of ln(z-1) | | Derivative of -81x^-4 | | Derivative of x-e^(-0.5)x^2 | | Derivative of 1/(2x-3) | | Derivative of 1/2x-3 | | Derivative of (x^(1/2)) | | Derivative of 2ln(2)*x | | Derivative of 2sin(x)(cos(3x)-1) | | Derivative of sin((pi*x)/4) | | Derivative of 7cos(7x^2) | | Derivative of 3x^2ln(7x) | | Derivative of (4-5r)/3 | | Derivative of sin(7pi/6) | | Derivative of 4(sin((7*x)-(pi/2))) |