Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(sin(6*x)*sin(7*x)+cos(6*x)*cos(7*x))'The calculation above is a derivative of the function f (x)
(sin(6*x)*sin(7*x))'+(cos(6*x)*cos(7*x))'
(sin(6*x))'*sin(7*x)+sin(6*x)*(sin(7*x))'+(cos(6*x)*cos(7*x))'
cos(6*x)*(6*x)'*sin(7*x)+sin(6*x)*(sin(7*x))'+(cos(6*x)*cos(7*x))'
cos(6*x)*((6)'*x+6*(x)')*sin(7*x)+sin(6*x)*(sin(7*x))'+(cos(6*x)*cos(7*x))'
cos(6*x)*(0*x+6*(x)')*sin(7*x)+sin(6*x)*(sin(7*x))'+(cos(6*x)*cos(7*x))'
cos(6*x)*(0*x+6*1)*sin(7*x)+sin(6*x)*(sin(7*x))'+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+sin(6*x)*(sin(7*x))'+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+sin(6*x)*cos(7*x)*(7*x)'+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+sin(6*x)*cos(7*x)*((7)'*x+7*(x)')+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+sin(6*x)*cos(7*x)*(0*x+7*(x)')+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+sin(6*x)*cos(7*x)*(0*x+7*1)+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+sin(6*x)*7*cos(7*x)+(cos(6*x)*cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)+(cos(6*x))'*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-sin(6*x)*(6*x)'*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-sin(6*x)*((6)'*x+6*(x)')*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-sin(6*x)*(0*x+6*(x)')*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-sin(6*x)*(0*x+6*1)*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)+6*(-sin(6*x))*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*(cos(7*x))'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*-sin(7*x)*(7*x)'
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*-sin(7*x)*((7)'*x+7*(x)')
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*-sin(7*x)*(0*x+7*(x)')
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*-sin(7*x)*(0*x+7*1)
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*7*(-sin(7*x))
6*cos(6*x)*sin(7*x)+7*sin(6*x)*cos(7*x)-6*sin(6*x)*cos(7*x)+cos(6*x)*-7*sin(7*x)
7*sin(6*x)*cos(7*x)-(6*sin(6*x)*cos(7*x))-(7*cos(6*x)*sin(7*x))+6*cos(6*x)*sin(7*x)
| Derivative of Cos(6x-7x) | | Derivative of 4ln(2x)-3ln(3x) | | Derivative of (e^(-3x))(cos(0.5x)) | | Derivative of cos(0.5x) | | Derivative of (2x^2+3x)(1+x)^0.5 | | Derivative of (1+x)^0.5 | | Derivative of (1+x)^1/2 | | Derivative of 2x^2-11x+12 | | Derivative of Tan(x)^(1/x) | | Derivative of (2x+3)/x^4 | | Derivative of 4e^(7x) | | Derivative of ln(cos(4t)) | | Derivative of (x+y) | | Derivative of cos(x+y) | | Derivative of ln(e^-5x) | | Derivative of 8^x^6-6 | | Derivative of 4x+5 | | Derivative of ln(4x+5) | | Derivative of ((x)cos(x))^-1 | | Derivative of 2ln(x)*x | | Derivative of (x)cos(3x) | | Derivative of (x)sin(3x) | | Derivative of 2(x)*sin(2x) | | Derivative of 5/6 | | Derivative of 5x-12+12x-x^3 | | Derivative of 1/2cos(2x) | | Derivative of ln(e^15x) | | Derivative of Ln(x-2) | | Derivative of (e^(8x)/8) | | Derivative of e^8x | | Derivative of 8e^x-x | | Derivative of sin(2x)+cos(2x) |