Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(tan(4*x)/(4*x))'The calculation above is a derivative of the function f (x)
((tan(4*x))'*4*x-(tan(4*x)*(4*x)'))/((4*x)^2)
(((4*x)'/((cos(4*x))^2))*4*x-(tan(4*x)*(4*x)'))/((4*x)^2)
((((4)'*x+4*(x)')/((cos(4*x))^2))*4*x-(tan(4*x)*(4*x)'))/((4*x)^2)
(((0*x+4*(x)')/((cos(4*x))^2))*4*x-(tan(4*x)*(4*x)'))/((4*x)^2)
(((0*x+4*1)/((cos(4*x))^2))*4*x-(tan(4*x)*(4*x)'))/((4*x)^2)
((4/((cos(4*x))^2))*4*x-(tan(4*x)*(4*x)'))/((4*x)^2)
((4/((cos(4*x))^2))*4*x-(tan(4*x)*((4)'*x+4*(x)')))/((4*x)^2)
((4/((cos(4*x))^2))*4*x-(tan(4*x)*(0*x+4*(x)')))/((4*x)^2)
((4/((cos(4*x))^2))*4*x-(tan(4*x)*(0*x+4*1)))/((4*x)^2)
((4/((cos(4*x))^2))*4*x-(tan(4*x)*4))/((4*x)^2)
((16*x)/((cos(4*x))^2)-(4*tan(4*x)))/(16*x^2)
| Derivative of tan(2x)/2x | | Derivative of tan(2-7x) | | Derivative of cos(2-7x) | | Derivative of 2x^3(e^(-x^2/2)) | | Derivative of y^2-x^2 | | Derivative of (28x)^x | | Derivative of 28x^x | | Derivative of 2*cos(0.5x)^2 | | Derivative of (26x)^x | | Derivative of 100e^x^2 | | Derivative of 60cos(100t) | | Derivative of e^4(ln(x)) | | Derivative of sin(5x)*cos(3x) | | Derivative of 5*e^2^x | | Derivative of (X^3-2x)/(5x^2) | | Derivative of (3a^2)/(10-2a) | | Derivative of 500*cos(500*x) | | Derivative of sin(500x) | | Derivative of -500*sin(500*x) | | Derivative of (7cos(x)-8)/(sin(x)) | | Derivative of (3.14^62)(61x-1) | | Derivative of x^6-6x | | Derivative of e^(7x-1) | | Derivative of x^2-35 | | Derivative of C^2-35 | | Derivative of (1/4)sin(2x) | | Derivative of (3x^2e^x)^x | | Derivative of 4e^(5t) | | Derivative of 2cos(x^6) | | Derivative of 5cos(t^3) | | Derivative of e^3x/3x | | Derivative of (x/1-x)^0.5 |