f(-5)=-2(-5)+1/3

Simple and best practice solution for f(-5)=-2(-5)+1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(-5)=-2(-5)+1/3 equation:



f(-5)=-2(-5)+1/3
We move all terms to the left:
f(-5)-(-2(-5)+1/3)=0
We multiply parentheses
-5f-(-2(-5)+1/3)=0
We multiply all the terms by the denominator
-5f*3)-(+1-2(-5)=0
We add all the numbers together, and all the variables
-5f*3)-(+11=0
Wy multiply elements
-15f^2+11=0
a = -15; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-15)·11
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{165}}{2*-15}=\frac{0-2\sqrt{165}}{-30} =-\frac{2\sqrt{165}}{-30} =-\frac{\sqrt{165}}{-15} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{165}}{2*-15}=\frac{0+2\sqrt{165}}{-30} =\frac{2\sqrt{165}}{-30} =\frac{\sqrt{165}}{-15} $

See similar equations:

| -8-7b=8+b | | 15g−5=100 | | 9+5/8z=-27 | | 6/5a-1/2=183/10-7/2a | | -1/8x-12=18 | | 6x+13=-83 | | (y+4)/2=8 | | 4y-4=35+4y | | 20x+15x=23000 | | (y+7)/2=-3 | | (y-10)/2=8 | | 13x=180° | | -9+9n-4=23 | | (x+9)/2=4 | | x+9)/2=4 | | 6x-8x+5=-2(x-2+7 | | (y+2)/2=-2 | | 0.16x=16 | | (x+5)/2=-10 | | 0.0.16x=16 | | X/4=4+x-8/5 | | (y+5)/2=1 | | y+5)/2=1( | | 9(x-4)=10(x | | y+5)/2=1 | | 2/3x-(4/3x-7)-11=-10 | | 11=t+11.5+-t | | 4n-8=3+n+5-7 | | 4z-1=17-2z | | 6y-y-6y-y=10 | | -13+n=-3 | | 7(7n+3)=-10(n-9) |

Equations solver categories