f(-5)=2(-5)+1/3

Simple and best practice solution for f(-5)=2(-5)+1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(-5)=2(-5)+1/3 equation:



f(-5)=2(-5)+1/3
We move all terms to the left:
f(-5)-(2(-5)+1/3)=0
We multiply parentheses
-5f-(2(-5)+1/3)=0
We multiply all the terms by the denominator
-5f*3)-(2(-5)+1=0
Wy multiply elements
-15f^2+1=0
a = -15; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-15)·1
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-15}=\frac{0-2\sqrt{15}}{-30} =-\frac{2\sqrt{15}}{-30} =-\frac{\sqrt{15}}{-15} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-15}=\frac{0+2\sqrt{15}}{-30} =\frac{2\sqrt{15}}{-30} =\frac{\sqrt{15}}{-15} $

See similar equations:

| 4(2x+5)-3x=4(x+3)+x | | 120+112+x=180 | | -7b+3+5=22 | | 3x3=9+2 | | -5v+8+6v=-30 | | 4y+2+2y+6=11y-12 | | -4/3x-8=-1/4+5 | | A=x+4/2 | | 7/500=360/x | | 4n-3=2-6n | | 5/12x4/9=x | | 3(2-x)+4=2(x-4)-7 | | 5x+13+2x+24+65=360 | | 0.9x=2.69 | | c/2c=26 | | y+8y+15y=6 | | 5/2=2/3x-1/6 | | 0.37=2.72^(5r) | | 1.2^n=609.76 | | 5x+4=7-2(x+1) | | -10x-6=74 | | -5(z-4)+6=5(3z+4)-4 | | 4x+7-2=5 | | 13=6+8(4w-7)-(2w+1) | | 3(p-3)=-5p3p-6 | | Y+4x+3=17-3x | | 0.5x+0.2x=x+1 | | -6(v+4)=96 | | x²+12x-12=1 | | x+120+2x+39=159 | | x+27+x+64=83 | | 255-16x^2=0 |

Equations solver categories