f(1)=6,f(2)=12,f(3)=24,f(4)=48

Simple and best practice solution for f(1)=6,f(2)=12,f(3)=24,f(4)=48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(1)=6,f(2)=12,f(3)=24,f(4)=48 equation:



f(1)=6.f(2)=12.f(3)=24.f(4)=48
We move all terms to the left:
f(1)-(6.f(2))=0
We add all the numbers together, and all the variables
-(+6.f^2)+f1=0
We add all the numbers together, and all the variables
-(+6.f^2)+f=0
We get rid of parentheses
-6.f^2+f=0
We add all the numbers together, and all the variables
-6f^2+f=0
a = -6; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-6)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-6}=\frac{-2}{-12} =1/6 $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-6}=\frac{0}{-12} =0 $

See similar equations:

| 4(y=3)/3=5y-7 | | |x+15|=37 | | m/4−2=2 | | 7x+2+7x=114 | | 3x-(3x+4)=-6 | | 3x+1=9x+5 | | c+22=33 | | x-1/10=1 | | (3c+8/3)-(c/4)=1/2 | | 4(c=7)=-12 | | 1/5(-a+4)=6(2a+3) | | x/8-1/3=6 | | f(-3)=6(-3)-12 | | x^2-6+4x=48 | | 7x+4x-4=8x+20 | | 0.5x+4=47x-5.3 | | 4y-23=113 | | 92=-4(2r-5)-9 | | 10x+–15x=10 | | –8−n=n | | 4(x+5)=3(x-2)-2-(x+2) | | 8z-26=-54+z | | y-(-5.5)=-25 | | -19+a=-50 | | 30+40+x=80 | | 2x+3-4x=5x-x-9 | | 4+8p-6p-5+20p=0 | | 9x−3.2=6.8+8x | | 8-3x/6=-1 | | 2x+x+3=18 | | -3r-2=-5 | | 9•8/z=72/11 |

Equations solver categories