f(2)=3(4)+1

Simple and best practice solution for f(2)=3(4)+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(2)=3(4)+1 equation:



f(2)=3(4)+1
We move all terms to the left:
f(2)-(3(4)+1)=0
We add all the numbers together, and all the variables
f2-35=0
We add all the numbers together, and all the variables
f^2-35=0
a = 1; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·1·(-35)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*1}=\frac{0-2\sqrt{35}}{2} =-\frac{2\sqrt{35}}{2} =-\sqrt{35} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*1}=\frac{0+2\sqrt{35}}{2} =\frac{2\sqrt{35}}{2} =\sqrt{35} $

See similar equations:

| -5(1/6x-8)=40-x+1/6 | | G(-3)=5x-4 | | 7a–3a+12a–14=a | | 80x-240=2240 | | 31x+248=930 | | (2+1.3q)(4.3)= | | 3/4m-1/4m+3=2/4m+5 | | t2=256 | | 40x+5=420 | | 225=g2 | | 0=x^2-144 | | 289=w2 | | G(2)=5x-4 | | 900+x^2=5625 | | 61x+61=732 | | q2=400 | | 144=h2 | | j+5=16 | | 64=z2 | | 0=–8y+8y | | 9=u2 | | x/9=12/54 | | 0.07(x+2,000)=3,500 | | 121=m2 | | 4(x-0.6)=4 | | 0.15(x+2,000)=7,650 | | -6p=90 | | 49=y2 | | 7(g−9)+12=16 | | -6p=80 | | 64=g2 | | -21=v-2 |

Equations solver categories