f(X)=(x-(4+i))(x-(4-i))(x-2)

Simple and best practice solution for f(X)=(x-(4+i))(x-(4-i))(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(X)=(x-(4+i))(x-(4-i))(x-2) equation:


Simplifying
f(X) = (x + -1(4 + i))(x + -1(4 + -1i))(x + -2)

Multiply f * X
fX = (x + -1(4 + i))(x + -1(4 + -1i))(x + -2)
fX = (x + (4 * -1 + i * -1))(x + -1(4 + -1i))(x + -2)
fX = (x + (-4 + -1i))(x + -1(4 + -1i))(x + -2)

Reorder the terms:
fX = (-4 + -1i + x)(x + -1(4 + -1i))(x + -2)
fX = (-4 + -1i + x)(x + (4 * -1 + -1i * -1))(x + -2)
fX = (-4 + -1i + x)(x + (-4 + 1i))(x + -2)

Reorder the terms:
fX = (-4 + -1i + x)(-4 + 1i + x)(x + -2)

Reorder the terms:
fX = (-4 + -1i + x)(-4 + 1i + x)(-2 + x)

Multiply (-4 + -1i + x) * (-4 + 1i + x)
fX = (-4(-4 + 1i + x) + -1i * (-4 + 1i + x) + x(-4 + 1i + x))(-2 + x)
fX = ((-4 * -4 + 1i * -4 + x * -4) + -1i * (-4 + 1i + x) + x(-4 + 1i + x))(-2 + x)
fX = ((16 + -4i + -4x) + -1i * (-4 + 1i + x) + x(-4 + 1i + x))(-2 + x)
fX = (16 + -4i + -4x + (-4 * -1i + 1i * -1i + x * -1i) + x(-4 + 1i + x))(-2 + x)

Reorder the terms:
fX = (16 + -4i + -4x + (4i + -1ix + -1i2) + x(-4 + 1i + x))(-2 + x)
fX = (16 + -4i + -4x + (4i + -1ix + -1i2) + x(-4 + 1i + x))(-2 + x)
fX = (16 + -4i + -4x + 4i + -1ix + -1i2 + (-4 * x + 1i * x + x * x))(-2 + x)

Reorder the terms:
fX = (16 + -4i + -4x + 4i + -1ix + -1i2 + (1ix + -4x + x2))(-2 + x)
fX = (16 + -4i + -4x + 4i + -1ix + -1i2 + (1ix + -4x + x2))(-2 + x)

Reorder the terms:
fX = (16 + -4i + 4i + -1ix + 1ix + -1i2 + -4x + -4x + x2)(-2 + x)

Combine like terms: -4i + 4i = 0
fX = (16 + 0 + -1ix + 1ix + -1i2 + -4x + -4x + x2)(-2 + x)
fX = (16 + -1ix + 1ix + -1i2 + -4x + -4x + x2)(-2 + x)

Combine like terms: -1ix + 1ix = 0
fX = (16 + 0 + -1i2 + -4x + -4x + x2)(-2 + x)
fX = (16 + -1i2 + -4x + -4x + x2)(-2 + x)

Combine like terms: -4x + -4x = -8x
fX = (16 + -1i2 + -8x + x2)(-2 + x)

Multiply (16 + -1i2 + -8x + x2) * (-2 + x)
fX = (16(-2 + x) + -1i2 * (-2 + x) + -8x * (-2 + x) + x2(-2 + x))
fX = ((-2 * 16 + x * 16) + -1i2 * (-2 + x) + -8x * (-2 + x) + x2(-2 + x))
fX = ((-32 + 16x) + -1i2 * (-2 + x) + -8x * (-2 + x) + x2(-2 + x))
fX = (-32 + 16x + (-2 * -1i2 + x * -1i2) + -8x * (-2 + x) + x2(-2 + x))
fX = (-32 + 16x + (2i2 + -1i2x) + -8x * (-2 + x) + x2(-2 + x))
fX = (-32 + 16x + 2i2 + -1i2x + (-2 * -8x + x * -8x) + x2(-2 + x))
fX = (-32 + 16x + 2i2 + -1i2x + (16x + -8x2) + x2(-2 + x))
fX = (-32 + 16x + 2i2 + -1i2x + 16x + -8x2 + (-2 * x2 + x * x2))
fX = (-32 + 16x + 2i2 + -1i2x + 16x + -8x2 + (-2x2 + x3))

Reorder the terms:
fX = (-32 + 2i2 + -1i2x + 16x + 16x + -8x2 + -2x2 + x3)

Combine like terms: 16x + 16x = 32x
fX = (-32 + 2i2 + -1i2x + 32x + -8x2 + -2x2 + x3)

Combine like terms: -8x2 + -2x2 = -10x2
fX = (-32 + 2i2 + -1i2x + 32x + -10x2 + x3)

Solving
fX = -32 + 2i2 + -1i2x + 32x + -10x2 + x3

Solving for variable 'f'.

Move all terms containing f to the left, all other terms to the right.

Divide each side by 'X'.
f = -32X-1 + 2i2X-1 + -1i2xX-1 + 32xX-1 + -10x2X-1 + x3X-1

Simplifying
f = -32X-1 + 2i2X-1 + -1i2xX-1 + 32xX-1 + -10x2X-1 + x3X-1

See similar equations:

| x+4-11=29 | | 12=3y+4 | | 1/6(7x-18) | | -10=4z | | 5x^2-y^2+4xy=18 | | ax+b=cox | | 7x+5y=9x+4 | | ab+ax+-1c=0 | | X=3+2t-3s | | 7x-9=3x-5 | | 15-2x=13+5x | | 8x-5+2x=13+5x | | 8x-6+2x=10+5x | | 8x-6+2x=12+5x | | 8x-6+2x=13+4x | | 3x-6=16-2x | | 3x-6=17-x | | 7x-15=4x-9 | | 2x+x+2x+x=480 | | 5n-3n= | | 49=-7/4x | | 6x^3-50x^2+16x=0 | | X^3-13x^2+58x-84=0 | | 14x^2-23x+3=0 | | -4+2x=-6+9x | | x*2+3x+9=0 | | 6x+35=16x-5 | | 2x+75=180 | | 2x^2-16x+48=0 | | 2y*y-4y-5=0 | | 4.5xc=60 | | 3x^2-12x+21=47 |

Equations solver categories