f(x)=(x+2)(x-4i)(x+4i)

Simple and best practice solution for f(x)=(x+2)(x-4i)(x+4i) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(x)=(x+2)(x-4i)(x+4i) equation:


Simplifying
f(x) = (x + 2)(x + -4i)(x + 4i)

Multiply f * x
fx = (x + 2)(x + -4i)(x + 4i)

Reorder the terms:
fx = (2 + x)(x + -4i)(x + 4i)

Reorder the terms:
fx = (2 + x)(-4i + x)(x + 4i)

Reorder the terms:
fx = (2 + x)(-4i + x)(4i + x)

Multiply (2 + x) * (-4i + x)
fx = (2(-4i + x) + x(-4i + x))(4i + x)
fx = ((-4i * 2 + x * 2) + x(-4i + x))(4i + x)
fx = ((-8i + 2x) + x(-4i + x))(4i + x)
fx = (-8i + 2x + (-4i * x + x * x))(4i + x)
fx = (-8i + 2x + (-4ix + x2))(4i + x)

Reorder the terms:
fx = (-8i + -4ix + 2x + x2)(4i + x)
fx = (-8i + -4ix + 2x + x2)(4i + x)

Multiply (-8i + -4ix + 2x + x2) * (4i + x)
fx = (-8i * (4i + x) + -4ix * (4i + x) + 2x * (4i + x) + x2(4i + x))
fx = ((4i * -8i + x * -8i) + -4ix * (4i + x) + 2x * (4i + x) + x2(4i + x))

Reorder the terms:
fx = ((-8ix + -32i2) + -4ix * (4i + x) + 2x * (4i + x) + x2(4i + x))
fx = ((-8ix + -32i2) + -4ix * (4i + x) + 2x * (4i + x) + x2(4i + x))
fx = (-8ix + -32i2 + (4i * -4ix + x * -4ix) + 2x * (4i + x) + x2(4i + x))

Reorder the terms:
fx = (-8ix + -32i2 + (-4ix2 + -16i2x) + 2x * (4i + x) + x2(4i + x))
fx = (-8ix + -32i2 + (-4ix2 + -16i2x) + 2x * (4i + x) + x2(4i + x))
fx = (-8ix + -32i2 + -4ix2 + -16i2x + (4i * 2x + x * 2x) + x2(4i + x))
fx = (-8ix + -32i2 + -4ix2 + -16i2x + (8ix + 2x2) + x2(4i + x))
fx = (-8ix + -32i2 + -4ix2 + -16i2x + 8ix + 2x2 + (4i * x2 + x * x2))
fx = (-8ix + -32i2 + -4ix2 + -16i2x + 8ix + 2x2 + (4ix2 + x3))

Reorder the terms:
fx = (-8ix + 8ix + -4ix2 + 4ix2 + -32i2 + -16i2x + 2x2 + x3)

Combine like terms: -8ix + 8ix = 0
fx = (0 + -4ix2 + 4ix2 + -32i2 + -16i2x + 2x2 + x3)
fx = (-4ix2 + 4ix2 + -32i2 + -16i2x + 2x2 + x3)

Combine like terms: -4ix2 + 4ix2 = 0
fx = (0 + -32i2 + -16i2x + 2x2 + x3)
fx = (-32i2 + -16i2x + 2x2 + x3)

Solving
fx = -32i2 + -16i2x + 2x2 + x3

Solving for variable 'f'.

Move all terms containing f to the left, all other terms to the right.

Divide each side by 'x'.
f = -32i2x-1 + -16i2 + 2x + x2

Simplifying
f = -32i2x-1 + -16i2 + 2x + x2

Reorder the terms:
f = -16i2 + -32i2x-1 + 2x + x2

See similar equations:

| 2(-6+x)=16 | | -7x+9(-10)=-20 | | 6c+2c-6c+2c-2c=4 | | -7(-10)+9y=-20 | | 15x+6x-16x=20 | | 6p+3p=9 | | 285.9912=6.28r^2+33.125r | | 14d-11d=9 | | 7+0.4x=11 | | 16q-14q=12 | | (x-8)-(x+7)=9x | | 8z+z=18 | | https://content.thinkthroughmath.com/uploads/media_library/item/925104/L410aQ92105_T2-6c2b818b10a591cfb920da0689cf2e3e.png | | 4y-3=5y-10 | | y^3=1/x | | 3y-9=3x-3 | | 7(3x-0.3)=2x-2.1 | | -3(2)+4=-5(2)+8 | | 4/3x3.14x5^2 | | 5/0.1152-g=495 | | z=x-13 | | 2cos(3x)cos(2x)+2sin(3x)sin(2x)=1 | | 2v=v+14 | | 5(x-10)=30 | | 25+0.45x= | | 25+0.45x=y | | r+25=88 | | y=16(4/5)(x) | | y=16(4/5)^x | | 6(-3m-2)=-120 | | -11x-4(x+11)=3(10-13x)-2 | | 130=3x |

Equations solver categories