If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying f(x) = -0.5(x + 2)(x + -1)(x + -4) Multiply f * x fx = -0.5(x + 2)(x + -1)(x + -4) Reorder the terms: fx = -0.5(2 + x)(x + -1)(x + -4) Reorder the terms: fx = -0.5(2 + x)(-1 + x)(x + -4) Reorder the terms: fx = -0.5(2 + x)(-1 + x)(-4 + x) Multiply (2 + x) * (-1 + x) fx = -0.5(2(-1 + x) + x(-1 + x))(-4 + x) fx = -0.5((-1 * 2 + x * 2) + x(-1 + x))(-4 + x) fx = -0.5((-2 + 2x) + x(-1 + x))(-4 + x) fx = -0.5(-2 + 2x + (-1 * x + x * x))(-4 + x) fx = -0.5(-2 + 2x + (-1x + x2))(-4 + x) Combine like terms: 2x + -1x = 1x fx = -0.5(-2 + 1x + x2)(-4 + x) Multiply (-2 + 1x + x2) * (-4 + x) fx = -0.5(-2(-4 + x) + 1x * (-4 + x) + x2(-4 + x)) fx = -0.5((-4 * -2 + x * -2) + 1x * (-4 + x) + x2(-4 + x)) fx = -0.5((8 + -2x) + 1x * (-4 + x) + x2(-4 + x)) fx = -0.5(8 + -2x + (-4 * 1x + x * 1x) + x2(-4 + x)) fx = -0.5(8 + -2x + (-4x + 1x2) + x2(-4 + x)) fx = -0.5(8 + -2x + -4x + 1x2 + (-4 * x2 + x * x2)) fx = -0.5(8 + -2x + -4x + 1x2 + (-4x2 + x3)) Combine like terms: -2x + -4x = -6x fx = -0.5(8 + -6x + 1x2 + -4x2 + x3) Combine like terms: 1x2 + -4x2 = -3x2 fx = -0.5(8 + -6x + -3x2 + x3) fx = (8 * -0.5 + -6x * -0.5 + -3x2 * -0.5 + x3 * -0.5) fx = (-4 + 3x + 1.5x2 + -0.5x3) Solving fx = -4 + 3x + 1.5x2 + -0.5x3 Solving for variable 'f'. Move all terms containing f to the left, all other terms to the right. Divide each side by 'x'. f = -4x-1 + 3 + 1.5x + -0.5x2 Simplifying f = -4x-1 + 3 + 1.5x + -0.5x2 Reorder the terms: f = 3 + -4x-1 + 1.5x + -0.5x2
| 65x+62=11 | | 15y+7=y-609 | | m(x)=3/4x | | 65-62=11 | | 9+16x-5y= | | c-35=-7c-3 | | 4/9=x/4 | | 5+3m=20 | | 7xy-4xy= | | c-112=7c-4 | | -4+w=9 | | 10x-3=3x+39 | | -5q-3=q-249 | | Sinx=0.7364 | | 7y+5=y-61 | | x^3+6x^2+9x-380=0 | | -9(w-8)=-6w+45 | | 2x+6=5x+14 | | 24x^3-12x^3/6x | | c+285=-6c-9 | | 4v+2=2(v-9) | | 5v+3=7v-9 | | 1/5x-5=19 | | 110y+60x=265 | | p/-10=-9 | | -6a-3=a+172 | | 4x+2=7x-37 | | 3x+10=-5x-46 | | 8(x+1)=5x+32 | | 60x+110d=265 | | e-237=-9e-7 | | 8r=12r^2 |