If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f2+20f=44
We move all terms to the left:
f2+20f-(44)=0
We add all the numbers together, and all the variables
f^2+20f-44=0
a = 1; b = 20; c = -44;
Δ = b2-4ac
Δ = 202-4·1·(-44)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-24}{2*1}=\frac{-44}{2} =-22 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+24}{2*1}=\frac{4}{2} =2 $
| 6(2+4x)=12 | | 4n-3=34 | | 14a+30(-14-2a)=-6(12a-34) | | 12x-14=45 | | v=(4/3)4.5^2(3.14) | | 180(n-2)=3780 | | 2(-8x-6)+3x=-7(x-6) | | 80=-10x-20 | | 2x(4+9)9=4x | | 3x-2+2x+4x-4+3x+18=360 | | 180(n-2)=6840 | | F(-x)=2x+3/7x-9 | | 10x-25-11+6=360 | | 5(4x+3)+6=18 | | -5(x+1)=5(x+5)-15 | | 500=-16t^2-2t+539 | | 5y=44+y | | x2=2549 | | 6x+30+4x=10(×+3) | | T12x=96 | | 2e=-12e | | 18a=7a | | 39=-16t^2-2t | | n÷17=25 | | 10^x=3.7*10^-9 | | 3/x+12=18 | | -(4-4p)=-2(2-6p) | | 10+x2=52 | | w=-0.66w | | -0.5x=-4.3= | | 3x/4-9/2=3/2 | | 416=-16x+-96 |