If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f2=1/22+3
We move all terms to the left:
f2-(1/22+3)=0
We add all the numbers together, and all the variables
f^2-(1/22+3)=0
We get rid of parentheses
f^2-3-1/22=0
We multiply all the terms by the denominator
f^2*22-1-3*22=0
We add all the numbers together, and all the variables
f^2*22-67=0
Wy multiply elements
22f^2-67=0
a = 22; b = 0; c = -67;
Δ = b2-4ac
Δ = 02-4·22·(-67)
Δ = 5896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5896}=\sqrt{4*1474}=\sqrt{4}*\sqrt{1474}=2\sqrt{1474}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1474}}{2*22}=\frac{0-2\sqrt{1474}}{44} =-\frac{2\sqrt{1474}}{44} =-\frac{\sqrt{1474}}{22} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1474}}{2*22}=\frac{0+2\sqrt{1474}}{44} =\frac{2\sqrt{1474}}{44} =\frac{\sqrt{1474}}{22} $
| 2k^2=5k | | -5.36=d-6.96 | | -14=-12v | | C=37.85+0.25x | | Y=g3 | | m-7.3=-3.3 | | 1=4y-6 | | -54=-8p+10 | | f-8=1/2-8+3 | | 2n+7=3n-47 | | p+2.9=9.9 | | 5w=4w-9 | | 1n+7=180 | | 39=m-122 | | 25/11=50/x | | 2((x-7)^5)+3=67 | | -7x+4x+8=2(x-6) | | r/19=-29 | | 9x+4=-40 | | 2.475=a/4 | | z+200=961 | | 180=3n-47 | | -28w=224 | | C=37.77+0.25x | | –7m+13=–64 | | 20/5y=40 | | x2–12x=45 | | 1+|5x-1|=3x-8 | | –3s−20=20−7s+20 | | y/9=22 | | n-20=37/9 | | 2f-3(15-f)=5 |