If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f2=49
We move all terms to the left:
f2-(49)=0
We add all the numbers together, and all the variables
f^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| 17+16p=17p | | 9x+3-45+10x=15 | | 9(3x-2)=2x-5 | | Y=0.6x+30 | | -16=-2(q-8) | | -12m-2m=14 | | -142+14=4x+98 | | 5(x-2)=2(x+8) | | 2y-6y+-9=15 | | -11+2x=x+16 | | -2x=6x-56 | | (3/4x-2/3=5/12) | | 7=11-g | | 2x-3/4x+5=1/3 | | 4(x+5)=2(x+20) | | 7x-32=24+5x | | 2j-j=8 | | 2(2y−12)=0 | | -4=-4(w+19) | | 10x-38=7x+10 | | (9y-2)(2y-5)=0 | | 17960÷100=2x | | -6x-58=78-10x | | 4c+20=10 | | 3(2x-4)-(3x+8)=x-2 | | (j+4)(j-3)=0 | | 3(w+2)+2(w-4)=4w+8-w | | -50-10x=-7x+34 | | p(7p-2)=0 | | -78-4x=2x+102 | | 1/10y+6=-19 | | -4(x-1/2)=3x+3-5x |