f2=5/8

Simple and best practice solution for f2=5/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f2=5/8 equation:



f2=5/8
We move all terms to the left:
f2-(5/8)=0
We add all the numbers together, and all the variables
f2-(+5/8)=0
We add all the numbers together, and all the variables
f^2-(+5/8)=0
We get rid of parentheses
f^2-5/8=0
We multiply all the terms by the denominator
f^2*8-5=0
Wy multiply elements
8f^2-5=0
a = 8; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·8·(-5)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*8}=\frac{0-4\sqrt{10}}{16} =-\frac{4\sqrt{10}}{16} =-\frac{\sqrt{10}}{4} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*8}=\frac{0+4\sqrt{10}}{16} =\frac{4\sqrt{10}}{16} =\frac{\sqrt{10}}{4} $

See similar equations:

| 41-90=x | | 4−3y=-6 | | (8x-20)+(3x+2)=180 | | -2x=x+27 | | 1/3m-4=2 | | 5=|-8-8x| | | 3(y-5)-5=-21 | | 6/k+3=6/k-7 | | 20+30b=-20 | | x+2x3=27 | | 10-2y+10=y-10 | | 110-5x=180 | | 4x=(34+102)° | | 3+y+20=95 | | n-38=25 | | 5.8x+5=3.8x+17 | | Y=-16x2+9x+4 | | 24=6-2(b-3) | | 7d-6=3d+10 | | Y=16x2+9x+4 | | 2x-1=(1x+3) | | 24=6-29b-3) | | Y=(4x+31) | | 4x=(x+102)° | | 5(y+9)=-5y+15 | | 6.2x+6=1.2x+16 | | 5(-9x+1)+5=-10x+5(-7x+2) | | n-348=176 | | 4x-5+90+7x-4=180 | | P=9q=7 | | 6/10x1/4=x | | 2-4x-80=0 |

Equations solver categories