f2=P0+P1+P2+P3+P4+P8+P12

Simple and best practice solution for f2=P0+P1+P2+P3+P4+P8+P12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f2=P0+P1+P2+P3+P4+P8+P12 equation:



f2=0+1+2+3+4+8+12
We move all terms to the left:
f2-(0+1+2+3+4+8+12)=0
We add all the numbers together, and all the variables
f2-30=0
We add all the numbers together, and all the variables
f^2-30=0
a = 1; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·1·(-30)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*1}=\frac{0-2\sqrt{30}}{2} =-\frac{2\sqrt{30}}{2} =-\sqrt{30} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*1}=\frac{0+2\sqrt{30}}{2} =\frac{2\sqrt{30}}{2} =\sqrt{30} $

See similar equations:

| 3x-1+2x+16+12=180 | | 8x(-3)=x | | 3x-1+2x=16+12 | | f1=P4+P5+P6+P7+P8+P9 | | 6+x-3=3x+21 | | x+2+10=2x+13+25 | | 13+20+15+18.2+x=180 | | -4x+4+2x+22+4+6+9+10=180 | | -4x+4=2x+22 | | 7(x-2)=32 | | 45x−8=16 | | 16+4(t-6)=0 | | 3(a-2)+29=24 | | -5=1+(4p+2) | | -5=1+(4p+2 | | 66.2+x=180 | | 1x+4=44 | | x=47-6(7) | | 10+x+2=2x+13+25 | | 1+4y=44 | | 5=(4p+2)+1 | | 47-6y+5y=40 | | 5x+4=  x+44 | | x+2+2x+13=10 | | 3(8x-3)=7(4x+1) | | 8x+-4=26-3 | | x+2+2x+13+10=90 | | x+2+2x+13+10=180 | | 4√x=44.4 | | 2.25÷1.5=n | | 200=5x+5x | | 12/x=0.26 |

Equations solver categories