If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2-13g+40=0
We add all the numbers together, and all the variables
g^2-13g+40=0
a = 1; b = -13; c = +40;
Δ = b2-4ac
Δ = -132-4·1·40
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3}{2*1}=\frac{10}{2} =5 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3}{2*1}=\frac{16}{2} =8 $
| 3x+x+92=180 | | x°=(2x+21)° | | 3=z11 | | 7(c−12)=−21 | | 10=2/3x-8 | | (2x+21)=x | | 2y^-20y=0 | | 3x+x+14=180 | | 17.50h+200=637.50 | | m-12=-15 | | (3x+25)=2x=180 | | X^2-4x=164 | | 110=6+(3b)+b | | -6a-12=8a-72 | | 8x-7=-5x+19 | | (13x^2-34x+12)/(3x-2)=x-1 | | 36-10q=8q | | 3(x+8x)=12 | | 1/2(x−42)=1+6x | | 3x-(-36)=-27 | | 3x+1.5x^2=72 | | 2w-8=18 | | 152+a+a=360 | | 12x-10+110=360 | | 2y/3=54 | | 12x-10+110=180 | | 22+x=110 | | x+x+x=110 | | (10x-14)+(3x+11)+(3x+15)=180 | | 2^2020-(x+2^2020)=-5x+16 | | 3x-80=2x+40 | | Y-6+51=72+x-5 |