If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2-14g-15=0
We add all the numbers together, and all the variables
g^2-14g-15=0
a = 1; b = -14; c = -15;
Δ = b2-4ac
Δ = -142-4·1·(-15)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-16}{2*1}=\frac{-2}{2} =-1 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+16}{2*1}=\frac{30}{2} =15 $
| 18x^2+6x-684=0 | | (5b-3)(2b+2)=0 | | 3s+13s=128 | | 7(x+8)/6=14 | | -7x+7=9x-89 | | 6-3b=6(b+7) | | 4+5x+4/2=21 | | 6x+5/3=12 | | 20x=-250 | | -3w=-11.1 | | 3(47)-8=2y-17 | | x-9=5x-11 | | 0.085y+4989=0.060y+4.984 | | 40t^2-90=0 | | -9-3n=-6(n+3-) | | -9x+9x-7x=-42 | | -9-3n=-6(n+3 | | -14+22=-4(x+6) | | -5(4y+3)-5=-8(y+5)+4y | | -5(4y+3)-5=-8(y+5)=4y | | 468=40x+9 | | -4/9v=-8 | | 14x+(-6)=180 | | -4(4y+4)-19=-8(y+7)+4y | | 1/5(-10k+65)=4+10k | | 0.024y+5.553=0.010y+5.546 | | -4(3n-5)=24 | | 5(k-5)-(4k+6)=9 | | 0.14-0.01(y+2)=-0.03(4-y) | | 7(2+v)+39v=10v | | 3.6q-3.8-5.9q=-3.3q-3.3 | | 0.50y+0.35(30)=25.5 |