If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2=2=g
We move all terms to the left:
g2-(2)=0
We add all the numbers together, and all the variables
g^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| 3+2x=2(−x+5)−19 | | −6u=18 | | 1.5=2π√l/384 | | d3− 6=-3=d | | 6k+12=-12+7k | | 5x-47=-3x+33 | | m+7=12=m | | 4−2u=2=u | | /3=h | | 13=-7+4v | | 2y+5=8y | | 2s+4=0=s | | -9=3u-6 | | -49+5x=23-x | | 3/4=x(4+2)/8 | | 2w^2+-3w^2=0 | | x=0 | | 4/2=x(1+4)/5 | | (3x+58)=(7x+10) | | r2+5r-126=0 | | -37+6x=-x+40 | | 8(2-2x)=16x=19 | | 5(2-2x)+4x=10 | | 8x+25+12x+15=180 | | 3x+4x+6=48 | | 8+12b=92 | | 25x^2-20x-32=0 | | 5/m+1=7/2m+3 | | (y/3)=54 | | 12+7x-21=-8(3x-x)+4x | | 10x^2+2x-6=0 | | (v/2)=32 |