If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2=43
We move all terms to the left:
g2-(43)=0
We add all the numbers together, and all the variables
g^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $
| q2+67=13 | | 1=k3−1 | | 1=k3− 1 | | 15y-10y-10=76.85 | | 15y-10y-10=76.88 | | w^2=-63 | | 15=2d+7 | | 2d+9=11 | | 22x+5=65 | | 158=2x | | 64+1x=92 | | 4x-13x=119 | | 3x2+5x+10=0 | | (6m+8)=4(17-m) | | 2x+7=19 | | 222-3x=0 | | 24=2+40t-16t2 | | 5(8.7h5-2.50)=120 | | 3z×4=36+72 | | 5/8=x+1/4 | | -7+50+4x=-10 | | -18+31(-20r+37)=-31(20r-18) | | 24+2+40t+16t^2=0 | | 24=2+40t+-16t2 | | |-f-17|=24 | | 4k2+2k−6=0 | | |-f-17||=24 | | 4p^2=296 | | 14x-4=10x+8 | | 12-c-4=14c-10 | | p^2+9=65 | | 14y-10y-4=48.32 |