If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2=49
We move all terms to the left:
g2-(49)=0
We add all the numbers together, and all the variables
g^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| g+13/5=4 | | -24+-7q=18 | | 6d-11/2=2d | | 5n^2+4n+1=0 | | 10c-2c=8 | | 7+p=18 | | 2x-5-x=10-3x | | (3x-6)=114 | | 24+4w=72 | | x(-2)=3x2–2x+7 | | -30=x-(-30) | | 2x^2+-22=28 | | v/10-2=1 | | 5m^2−m−6=0 | | 43+x-7=180 | | 2x2+-22=28 | | 24-3m=21 | | 3c+5=232 | | (3m+2)(m+4)=0 | | y/0.3=9 | | 24=x+(-15) | | -1e-3=7 | | (x-5)-6x=10-x | | 36=3(w+40) | | q-37/9=4 | | 63z^2+61z=−6 | | 3(6x-4=22x | | 5n-2n+8=29 | | 10=3g+1g= | | z^2-10z=-25 | | (3x-8)²=36 | | -1/4(45x+4)=4 |