h=2A/h

Simple and best practice solution for h=2A/h equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for h=2A/h equation:



h=2/h
We move all terms to the left:
h-(2/h)=0
Domain of the equation: h)!=0
h!=0/1
h!=0
h∈R
We add all the numbers together, and all the variables
h-(+2/h)=0
We get rid of parentheses
h-2/h=0
We multiply all the terms by the denominator
h*h-2=0
Wy multiply elements
h^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $

See similar equations:

| -5(-2x+10)=60 | | 10.25a+7.5(8-a)=65.5 | | 1.2j+0.85(5-j)=4.95 | | 3x+8=8-3x | | T^2-15t-200=0 | | 0.95p+0.7(9-p)=7.8 | | 3w+7(3-w)=16 | | 14s+19=12s+19 | | 2(5v+3)-4(7+1)=-88 | | -5-(7x+4)=6x | | 8=-8+3d | | 10x+230=12 | | -42=-2x+8x-7 | | e-e-e=17 | | -10e=-30e | | 7(d+d)=14 | | 5p+7=3p-5=180 | | -7x-6x+7=-149 | | -7x-9=2x+31 | | 34=w+18 | | 5+2=3x+6 | | 3-3n=14-4n | | K+3x=4 | | 2(x+1)+2x=22 | | 6-4a=12+2a | | (x+1)/(2x+2)=(3)/(2x) | | 6(x+4)=8(x+28) | | d=2(10)-13 | | 4z-3z=2+19 | | 4e+6=9e+12 | | 9u-35=7(u-7) | | 8(7-y)=- |

Equations solver categories