If it's not what You are looking for type in the equation solver your own equation and let us solve it.
i=(4-3i)(1-2i)
We move all terms to the left:
i-((4-3i)(1-2i))=0
We add all the numbers together, and all the variables
i-((-3i+4)(-2i+1))=0
We multiply parentheses ..
-((+6i^2-3i-8i+4))+i=0
We calculate terms in parentheses: -((+6i^2-3i-8i+4)), so:We add all the numbers together, and all the variables
(+6i^2-3i-8i+4)
We get rid of parentheses
6i^2-3i-8i+4
We add all the numbers together, and all the variables
6i^2-11i+4
Back to the equation:
-(6i^2-11i+4)
i-(6i^2-11i+4)=0
We get rid of parentheses
-6i^2+i+11i-4=0
We add all the numbers together, and all the variables
-6i^2+12i-4=0
a = -6; b = 12; c = -4;
Δ = b2-4ac
Δ = 122-4·(-6)·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*-6}=\frac{-12-4\sqrt{3}}{-12} $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*-6}=\frac{-12+4\sqrt{3}}{-12} $
| -x-1=-11+4x | | -5-5b+1=-4 | | -2x-2=5x-16 | | 5x^*45+45=0+45,5x2+0=0+45, | | 315=a-10 | | $315=a-$10 | | 2(y=7)=28 | | -21=-4o-3o | | 5x2-45+45=0+455x2+0=0+455x2=45 | | 5^5+x=3^3 | | 10x+4=-7x-14 | | 5x2-45+45=0+455x2+0=0+45)(5x2=45) | | c+4=14 | | 1/8x+240=1/2x | | 12=m+8m | | (5x2-45+45=0+45)(5x2+0=0+45)(5x2=45) | | 2x=15+C | | 2x(3x−5)=4x(x−1)−6(x−12)= | | 2x(3x−5)=4x(x−1)−6(x−12) | | 1/2=a-6 | | 0=-4w-2w | | 3(y+2)+y=4(y-1)=10 | | -9=-5b+2b | | 60=x^2+10x | | 7x+12=2(3) | | 18+x/5=4 | | 4=-5+3y | | z÷8+5=6 | | 5/15=3v | | 8(w-2)=-6w+12 | | 4=t+3t | | -9.6=y/3-2.1 |