If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2+10=13
We move all terms to the left:
j2+10-(13)=0
We add all the numbers together, and all the variables
j^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| j2+ 10=13 | | -9x+4=89+5x | | 2x^2-5-7=0 | | 8x+4=-8x | | 9/x=0.32 | | -7+6x=7x-7 | | -8(4-r)16-32-8r=16-8r=48r=-6 | | 2+7x=-5x+62 | | (8-3x22)/3=x | | 3+7x=3x-13 | | -4-3x=2x-44 | | -32-88r=16 | | 3+x=3x-3 | | 16x12=x | | 5-6x=7x-73 | | 6n−25=71 | | 4r+2=50 | | -6x2–600=0 | | 18x^2+4x+6=0 | | 4z/10-7=-8z= | | X+X+20+y=180 | | 18^2+4x+6=0 | | 2(4x+10)=8x-20 | | 10+9d=55 | | 9z+31=94 | | 18+2u=32 | | y/4-y/14=1/4 | | 2s−53=21 | | 6b+2=98 | | P^2I-10p+15=0 | | 2(y-7)=9(3) | | 2x+4=7x–5 |