If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2+6j+5=0
We add all the numbers together, and all the variables
j^2+6j+5=0
a = 1; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·1·5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4}{2*1}=\frac{-10}{2} =-5 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4}{2*1}=\frac{-2}{2} =-1 $
| 12-(6-x)=23 | | -3+7(-2p-2)=-19p | | 23=12–(6-x) | | 5s-5s+2s=10 | | 2(x^2+1/x^2)+5(x+1/x)+1=0 | | 14j-9j+3j=8 | | (1-2x)(x+4)=0 | | -7(7x+9=49x-63 | | 20v-11v-5v-3v=12 | | 9w+2w-9w-2w+w=18 | | 7n-6n=16 | | 1/15x=39 | | 15d-5d=10 | | 6x-3(x+2)=3-4(x+3) | | 1/15x=30 | | 5q-4q=15 | | 19g-12g=14 | | 3^(2x+3)=4 | | 3^2x+3=4 | | 7m-8=2m+12 | | F(1)=×^2+4x-5 | | 6k-4k=12 | | m-1/2m+1=0 | | 3(y-4)=13 | | y^-8y-4=0 | | 18=j+299/28 | | q+26/5=10 | | 7x^2-4x=5x | | 3z-16+15z=12z+20 | | 7x-4x=5x | | 5=r/6-1 | | 25=14+x/11 |