If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2+7j+6=0
We add all the numbers together, and all the variables
j^2+7j+6=0
a = 1; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·1·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*1}=\frac{-12}{2} =-6 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*1}=\frac{-2}{2} =-1 $
| p=5/(-2)=9 | | x+14-3x-8=5x-2x+6 | | 3(5+k)=12 | | y=8(5)-2 | | 11t-5=15+6t=10 | | 13+x-6+3x=7x-4-2x | | 6(2r-2)=8r+40 | | 6x-(x-19)=2x-(+x) | | 66+4w=169 | | 2x-6x-15=x+x+9 | | -3+x=4x+6 | | 10+2v=18 | | 8x-10-4x+10=16+2x-8 | | 3500=500m | | 5(2x-4)=3x+1 | | 2/5*(j+40)=-4 | | -6x+7=-6x+2 | | -6=s+-6 | | 12-4x+6=x+3 | | 20p+22=10p-8+4p | | x+36+105+39=180 | | 5/2x+3=½x+15 | | 7x-25=2x+4+x+3 | | 25=16-h | | 12=f/3+8 | | 1/3=15x-4-10x+7 | | 4(3x-6.5)-21=37 | | 25n-30=47 | | 24c=864 | | 2x+4=2x-2=x-2 | | 10y+9=14 | | 5w-39=55-2w |