k(1-k)-k(1+k)+(2k+1)-(1-2k)=11k+5

Simple and best practice solution for k(1-k)-k(1+k)+(2k+1)-(1-2k)=11k+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k(1-k)-k(1+k)+(2k+1)-(1-2k)=11k+5 equation:


Simplifying
k(1 + -1k) + -1k(1 + k) + (2k + 1) + -1(1 + -2k) = 11k + 5
(1 * k + -1k * k) + -1k(1 + k) + (2k + 1) + -1(1 + -2k) = 11k + 5
(1k + -1k2) + -1k(1 + k) + (2k + 1) + -1(1 + -2k) = 11k + 5
1k + -1k2 + (1 * -1k + k * -1k) + (2k + 1) + -1(1 + -2k) = 11k + 5
1k + -1k2 + (-1k + -1k2) + (2k + 1) + -1(1 + -2k) = 11k + 5

Reorder the terms:
1k + -1k2 + -1k + -1k2 + (1 + 2k) + -1(1 + -2k) = 11k + 5

Remove parenthesis around (1 + 2k)
1k + -1k2 + -1k + -1k2 + 1 + 2k + -1(1 + -2k) = 11k + 5
1k + -1k2 + -1k + -1k2 + 1 + 2k + (1 * -1 + -2k * -1) = 11k + 5
1k + -1k2 + -1k + -1k2 + 1 + 2k + (-1 + 2k) = 11k + 5

Reorder the terms:
1 + -1 + 1k + -1k + 2k + 2k + -1k2 + -1k2 = 11k + 5

Combine like terms: 1 + -1 = 0
0 + 1k + -1k + 2k + 2k + -1k2 + -1k2 = 11k + 5
1k + -1k + 2k + 2k + -1k2 + -1k2 = 11k + 5

Combine like terms: 1k + -1k = 0
0 + 2k + 2k + -1k2 + -1k2 = 11k + 5
2k + 2k + -1k2 + -1k2 = 11k + 5

Combine like terms: 2k + 2k = 4k
4k + -1k2 + -1k2 = 11k + 5

Combine like terms: -1k2 + -1k2 = -2k2
4k + -2k2 = 11k + 5

Reorder the terms:
4k + -2k2 = 5 + 11k

Solving
4k + -2k2 = 5 + 11k

Solving for variable 'k'.

Reorder the terms:
-5 + 4k + -11k + -2k2 = 5 + 11k + -5 + -11k

Combine like terms: 4k + -11k = -7k
-5 + -7k + -2k2 = 5 + 11k + -5 + -11k

Reorder the terms:
-5 + -7k + -2k2 = 5 + -5 + 11k + -11k

Combine like terms: 5 + -5 = 0
-5 + -7k + -2k2 = 0 + 11k + -11k
-5 + -7k + -2k2 = 11k + -11k

Combine like terms: 11k + -11k = 0
-5 + -7k + -2k2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(5 + 7k + 2k2) = 0

Factor a trinomial.
-1((5 + 2k)(1 + k)) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(5 + 2k)' equal to zero and attempt to solve: Simplifying 5 + 2k = 0 Solving 5 + 2k = 0 Move all terms containing k to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + 2k = 0 + -5 Combine like terms: 5 + -5 = 0 0 + 2k = 0 + -5 2k = 0 + -5 Combine like terms: 0 + -5 = -5 2k = -5 Divide each side by '2'. k = -2.5 Simplifying k = -2.5

Subproblem 2

Set the factor '(1 + k)' equal to zero and attempt to solve: Simplifying 1 + k = 0 Solving 1 + k = 0 Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = 0 + -1 Combine like terms: 1 + -1 = 0 0 + k = 0 + -1 k = 0 + -1 Combine like terms: 0 + -1 = -1 k = -1 Simplifying k = -1

Solution

k = {-2.5, -1}

See similar equations:

| 2x^3+6x^2+4x+12=0 | | 7x^2+62=0 | | 12(x+3)=4(2x+8)+4x | | 5(x+4)+4=5x-(4-x) | | X(3X+4)=32 | | 7y^2-49=0 | | -2(u-4)=-8u+2 | | 2x+(2x+1)=27 | | -2(u-4)=-8+2 | | 6x=39-7x | | 2[7-(-5x-3)]=60x+50 | | 8v-26=2(v-7) | | -x(6x-7)= | | -x^2-x-0.55=0 | | -x^2-x=0.55 | | 4.1(x-1.15)=8.4 | | 15m(m+2)=8m-8 | | 3*x=2 | | 4n^2+7=407 | | (1-d)(d-1)+d(1+d)-3(1-d)+5(d-1)=(d+1)(d+2)-2(1+d)(2+d)+d(d-1) | | 12m(m+2)=5m-4 | | (1-d)(d-1)+d(1+d)-3(1-d)+5(d-1)=(d+1)(d+2)-2(1+d)(2+d)-2d(d-1) | | 7=g+11 | | 2x-cosx=0 | | -3k+4=-5k+40 | | (1x-9)(x+8)=0 | | 36m^2-729=0 | | 2(7h-2)=66 | | (1-d)(d-1)+d(1+d)-3(1-d)+5(d-1)=(d+1)(d+2)-2(1+d)(2+d)-d(d-1) | | exp(x*sqrt(0.55-x^2-x))+x^2+sqrt(0.55-x^2-x)-1.2=0 | | (7t-1)(8t+5)= | | f(x)3x-7= |

Equations solver categories