k(2)+k(2)+9=3(k+k)(2)-1

Simple and best practice solution for k(2)+k(2)+9=3(k+k)(2)-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k(2)+k(2)+9=3(k+k)(2)-1 equation:



k(2)+k(2)+9=3(k+k)(2)-1
We move all terms to the left:
k(2)+k(2)+9-(3(k+k)(2)-1)=0
We add all the numbers together, and all the variables
k2+k2-(3(+2k)2-1)+9=0
We add all the numbers together, and all the variables
2k^2-(3(+2k)2-1)+9=0
We calculate terms in parentheses: -(3(+2k)2-1), so:
3(+2k)2-1
We multiply parentheses
12k-1
Back to the equation:
-(12k-1)
We get rid of parentheses
2k^2-12k+1+9=0
We add all the numbers together, and all the variables
2k^2-12k+10=0
a = 2; b = -12; c = +10;
Δ = b2-4ac
Δ = -122-4·2·10
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*2}=\frac{4}{4} =1 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*2}=\frac{20}{4} =5 $

See similar equations:

| F(x)=4x-3x^2+5x | | z+3/5=z | | 4(x-2)-12=3(x-4)-12 | | (11x)-8=40 | | (11x)-8=9 | | (11x)-8=5 | | (11x)-8=47 | | 8+11x=47 | | 98=14x+7 | | 2x+1=5,5x-1= | | 7+3p=25 | | 7(x-1)-2(x-6)=2(x-5)+3 | | −4x+3=3x+10 | | 35+-4x=31 | | 2+5y=6+3y | | 2.5*p=7 | | 4x+563x+78+234=180 | | 4(2y)-8y=6 | | 4x-8(1.5)=6 | | x-35=-5 | | x^2(3x-4)(x-2)^3=0 | | 6·(–9)=9.5(a–6.9)2 | | x*1.5=11 | | xx1.5=11 | | (2)=-3x-3 | | 25+q=28 | | x÷12=-4 | | 16=0.5^2x | | 170=42x^2 | | 3x-8=2-1 | | S²+3s+2=0 | | 39=-7u+5(u+5) |

Equations solver categories