If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k(2)=18
We move all terms to the left:
k(2)-(18)=0
We add all the numbers together, and all the variables
k^2-18=0
a = 1; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·1·(-18)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*1}=\frac{0-6\sqrt{2}}{2} =-\frac{6\sqrt{2}}{2} =-3\sqrt{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*1}=\frac{0+6\sqrt{2}}{2} =\frac{6\sqrt{2}}{2} =3\sqrt{2} $
| -961=31w | | 3.2=20.7-7y | | 4(8=v)=8(3v+9) | | -(2m+8)=16.50 | | 5+y/8=-5.24 | | -10(x+4)=38 | | 0.875x=0.5 | | 5+2y+-12=y+9 | | 13-6x=4-3x | | 10+3p-2=2p+p+8 | | 162.6=3.3+b2÷2×19.6 | | 9(y-1)=6y-3 | | 6m+0=0 | | .5b-4=41 | | 6x-61=3x-8 | | Tn=n2−2n−4 | | .6x-7.2=-12 | | 6(3-2x)+5=11 | | 7x+13x-5-15=10-10+14x+6x | | 4x+5/6+x+16/6=x+7/4 | | 330+30x=50x | | 16^x=0•25 | | -1/2x+11/6x=20/9 | | -2(7v)=14 | | 10x-7=9x+0 | | -6y-9=-(y-1) | | (5x=4)-(-8x-2) | | C-3=c+3+ | | 6x-13+11x-2=180 | | 6x-13=11x-2=180 | | (-x=3)-(4-10) | | 1x+14+139=180 |