If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k(7k-3)=0
We multiply parentheses
7k^2-3k=0
a = 7; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·7·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*7}=\frac{0}{14} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*7}=\frac{6}{14} =3/7 $
| -1(2+b)=-2 | | 1=7r-6+7 | | 3x+10=-4+5x | | 9-2y=16-19 | | x=-10+5/9 | | 3x+x/3=4 | | 0.003=3x | | 9(p+3)=5p-1 | | x/7=4/10 | | -5x+2-4x=97 | | 2y*3y=0 | | -k+-5k=-5k-4 | | a+17=7 | | -5x/6=-10 | | 39n-60=-5n-2 | | 6p=60+36p | | 38-6v=v+24 | | 6=18–3w | | 5+4w=17 | | -9-x-4x=-54 | | 78-x=4-3x | | 4b+6=-9 | | X+2x/4+3x=3x/2+4x/8+13 | | 3q-19=10q+23 | | 1+6x+2x=1 | | 10(x-4)=5x+25 | | 5x-3+6x+1=5-2(x+4 | | 5r-2=6r+2 | | 16=2/3d-6+2/3d | | 6x-16=x+29 | | -20=2(x+9) | | 4x+3+4x+3+5x+5x=168 |