If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k(k+3)=10-5
We move all terms to the left:
k(k+3)-(10-5)=0
We add all the numbers together, and all the variables
k(k+3)-5=0
We multiply parentheses
k^2+3k-5=0
a = 1; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·1·(-5)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{29}}{2*1}=\frac{-3-\sqrt{29}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{29}}{2*1}=\frac{-3+\sqrt{29}}{2} $
| v+20/3=0 | | 3(-7x)=21 | | 4v+16=88 | | (1)/(4)-(y)/(7)=(1)/(28) | | n-14=-23 | | 26=x/3+7 | | y=3(5)-4/2 | | y=3(4)-4/2 | | (11x+8)+(12x–4)=180 | | -7-24=-8-9y | | y=3(3)-4/2 | | t+1/2=2 | | -3x=29+4x | | (11x+8)°+(12x–4)°=180° | | y=3(-1)-4/2 | | -2(m-9)=2 | | y=3()-4/2 | | y=3(2)-4/2 | | 2(q+1)=6 | | -6=-4x+2(x+5) | | -17=n-5 | | g-4/3=1 | | 4(x-3=-3+23 | | -7u+3(u-5)=21 | | -1.3x=3(x+2.13) | | -14b=182 | | k-49/6=5 | | 9j-45=2j+32 | | -198=11a | | 6x+2=5-4x | | 2n-12=2 | | 6x+1=9x^2 |