If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k(k+5)=11
We move all terms to the left:
k(k+5)-(11)=0
We multiply parentheses
k^2+5k-11=0
a = 1; b = 5; c = -11;
Δ = b2-4ac
Δ = 52-4·1·(-11)
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{69}}{2*1}=\frac{-5-\sqrt{69}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{69}}{2*1}=\frac{-5+\sqrt{69}}{2} $
| 3+1/2=2x+3/2 | | 227=143-w | | 3x^2+120x-800=0 | | 13x-77=13x+77 | | 21+y^=70 | | -10-3n=10-8n | | -0.22m=-0.0154 | | 9(x+2)+5=3x+6(3+x) | | 227-142=w | | 168=-x+66 | | 7x-7+8x+2=160 | | y=-5(2)-4 | | 1+r/9=5 | | y=-5(0)-4 | | -2b2+5=45 | | 13x-77=13x+13 | | y=-5(-4)-4 | | -8d+4=-9d | | 12x2+12x+6=0 | | 5x+x+1=7 | | 3-p=5p | | x³+3x-5=0 | | 3x=2(x-22) | | 7x=84;x=14 | | (x-2)²-(x-2)-2=0 | | (D^2+2D+5)y=15 | | 7x=84x=14 | | (5x)+3=19-(3x) | | 13(x-5)+12=5x+9 | | 11=1/9j | | 1.2=y/1.2* | | q=14+2/3 |