If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+10k-23=-4
We move all terms to the left:
k2+10k-23-(-4)=0
We add all the numbers together, and all the variables
k^2+10k-19=0
a = 1; b = 10; c = -19;
Δ = b2-4ac
Δ = 102-4·1·(-19)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{11}}{2*1}=\frac{-10-4\sqrt{11}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{11}}{2*1}=\frac{-10+4\sqrt{11}}{2} $
| 40c-16=30+12c | | 3n2-3n-7=0 | | 96q+92*(1-q)=100q+90*(1-q) | | 2(4a+5)+10=32 | | 4z+6=5z-9 | | 6x2-11x-22=0 | | x2=2x+10 | | 400-2a=262 | | 3(3a+2)-8=7 | | 8=–6t+14 | | 8+5x=3x+8 | | 3=9–n | | 3a+4=2(7-a) | | 120=x+90 | | (3/4)x-18=12 | | 5x+3=(7x+4) | | 2(7a+5)=66 | | 2(7-a)=4 | | x/7+22=-33 | | 37=c+1 | | 50=8x+180 | | 10/16=x/1 | | 84÷r=12* | | 5+3=-3(5x-6) | | 11p=5p+53 | | 12n+18=15n | | 74+-13x=35 | | -.25x+4.5=-x | | 3(4^x-5)+2=11 | | 7x-10=13x-10+180 | | 7x-10=13x-10=180 | | --9.3=d-3.4 |