If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+12k+23=0
We add all the numbers together, and all the variables
k^2+12k+23=0
a = 1; b = 12; c = +23;
Δ = b2-4ac
Δ = 122-4·1·23
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{13}}{2*1}=\frac{-12-2\sqrt{13}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{13}}{2*1}=\frac{-12+2\sqrt{13}}{2} $
| (4x+5)+(6x+3)+(5x+7)=180 | | 2(x-2)+5(x-5=6 | | 13y+3y=256 | | Y=7.5x+54 | | -119+8x=79+2x | | 2(x-4)/5=4 | | (4x-5)+(3x-7)+(x)=180 | | -8d=-10−10d | | (4x-8)(5x+2)=0 | | (3^2x)(4^x)=6 | | Y=2.4x+75.6 | | (32x)(4x)=6 | | Y=7.5x=54 | | 3+4/5=7-2x | | 6n-26=4n | | y-3=5(1.4-2) | | 34=v/4+11 | | Y=0x+54 | | x/3.5=1/7 | | -5=-2+w | | X.x/8+5=14 | | 24x+16=0 | | 20n−16n=20 | | 1/4(3x+1)+3=7 | | Y=6950+2.5x | | 3.6(x+4.5)=41.4 | | -24=3n+10 | | 2x-34= x-42- x+14 | | -2(p−12)=-4 | | 9p+-2p=11 | | 0.6(10n+25)=110+5n | | 5x+6-2x=3x+10-4 |