If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+12k+28=-7
We move all terms to the left:
k2+12k+28-(-7)=0
We add all the numbers together, and all the variables
k^2+12k+35=0
a = 1; b = 12; c = +35;
Δ = b2-4ac
Δ = 122-4·1·35
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2}{2*1}=\frac{-14}{2} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2}{2*1}=\frac{-10}{2} =-5 $
| 5w+36+w=180 | | 2x-6=-3x-9 | | 1-5x+7=27 | | -10(d+1)=-10 | | 130=(17x+3) | | 20+10x=8x+72 | | 10m=45-10m | | 2x-6=-3x–9 | | 59=(5x+4) | | 4x+20x-8=-2(-12x-8) | | -10k-3=-5k-8 | | 109s5=1.34E-34 | | d−–5=19 | | x/15=2x-9/10 | | 6z-20-z=-10+6z | | 4.08x-3.5=0.12-4.8x | | -2y=-3y+6 | | 2/4=5;s=24 | | |1/4w=12 | | 5y-2=7(18.5)-19 | | 5y-2°=7(18.5)-19° | | 10-3t=-7t-10 | | 7a-22=180 | | 3(4a+2)=2(a−2)= | | 10+8w=6w-10+4 | | –7+–4y=61 | | -10(x-2)-16=42 | | -6+7w=6w | | `5x+2x-9=40` | | 6x9=72 | | 72x+36x^2=0 | | 4*5^(x)=100 |