If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+12k-45=0
We add all the numbers together, and all the variables
k^2+12k-45=0
a = 1; b = 12; c = -45;
Δ = b2-4ac
Δ = 122-4·1·(-45)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18}{2*1}=\frac{-30}{2} =-15 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18}{2*1}=\frac{6}{2} =3 $
| 8c+18=14 | | |3-4t|+3=18 | | X+45+71+x+82=180 | | n/3-14=-9 | | 500=20w | | 6^(-2x)=1.5 | | 3x+3x+6=6x+x | | 13x+5+25+x+10=180 | | 8x-x-40=10x-x | | 4w²-20w+21=0 | | 19+(x+3)/2=1 | | n5=20 | | 180=68x+6 | | 1/2x+5-3=3 | | 66+x+x+87+40=180 | | m^2+28m=1 | | 8+2x=4(2-0.5x | | 0.11x=1.21 | | 2k−18=17+9k | | 3/4x+2=5/4 | | 7x-22=3x+14 | | 19+15d=(-20)+18d | | 72+x+74+x+44=180 | | 0x=3x-42 | | -x+213=55 | | −3.1x+7−7.4x=1.5x+6(x−3/2) | | 6(x−6)=6x−36 | | -u+79=286 | | 2x+62=5x-38 | | 160=81-x | | 9=4+x/6 | | 2(3x+4)-(x-4)=32 |