If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+13k+42=0
We add all the numbers together, and all the variables
k^2+13k+42=0
a = 1; b = 13; c = +42;
Δ = b2-4ac
Δ = 132-4·1·42
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*1}=\frac{-14}{2} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*1}=\frac{-12}{2} =-6 $
| (k+3)(k+7)=0 | | 4/9m-1/9=5/72 | | 16-2n=21-2n | | Z*2-2z-1=0 | | 2/3(c-18)+5=7 | | -(6-3x)+1=-2x-30 | | 16x=4(4x+4) | | (x+5)(x-4)=x | | N-3-7=-10-4n+5n | | -2(-7w+1)-3w=3(w-1)-5 | | -(6-3x)+1=2x-30 | | X=(x+5)(x-4) | | 5(a-6)=-27+6a | | -6=(1/3)+x | | -3h+1=-7 | | 2+2(1-6b)=64 | | 5x+2=-11 | | 92=20+9r | | 6(x-7)=4x+-8 | | 6n=4n-18 | | 2/5n+1=1/2n+2 | | 28-x=17-3x | | x+.65x=200 | | 26x+7=5(5x+5) | | 8=9y+4-2y | | 5(4+4r)=140 | | 2w+8=1 | | 10x+20=3(3x+4) | | 2.2+10m=8.91 | | 3/8=-9/4x | | 2(4x-3)=7x+-6 | | 2(10-6h=h-8 |