If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+19k=0
We add all the numbers together, and all the variables
k^2+19k=0
a = 1; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*1}=\frac{-38}{2} =-19 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*1}=\frac{0}{2} =0 $
| 8+3x=-4x-13 | | 8(m+1)=96 | | 56=14+6h | | b/5-1=3 | | 16x-4x-x-11x+2x=10 | | k+48/4=6 | | h+21/4=7 | | 67=6n-7 | | 5s-s-3s=17 | | 10(w+5)=80 | | 4(2x-2)=6(3x+2x) | | Y=12x+100 | | 26x+29=16x-4 | | 8n-8n+3n+4n-6n=2 | | 22+8z=94 | | 84=8u+20 | | 4x-8=18x+2 | | 1=-5+u/3 | | 7+9h=88 | | 59=p/6+50 | | 2(w-3)5w=3(w+3) | | 61=8k+-27 | | 6h-h+5h-h=9 | | w-42/9=5 | | d/4+78=6 | | 15w+18w-7+1=-5w+1-7 | | t/3-2=5 | | 3.8x-(-1-99.7x)=2.6+13.3x | | 99+4y=180 | | d/6+43=46 | | 9(s+33)=18 | | 109+2a+7=180 |