k2+20=80

Simple and best practice solution for k2+20=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k2+20=80 equation:



k2+20=80
We move all terms to the left:
k2+20-(80)=0
We add all the numbers together, and all the variables
k^2-60=0
a = 1; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·1·(-60)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*1}=\frac{0-4\sqrt{15}}{2} =-\frac{4\sqrt{15}}{2} =-2\sqrt{15} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*1}=\frac{0+4\sqrt{15}}{2} =\frac{4\sqrt{15}}{2} =2\sqrt{15} $

See similar equations:

| 5+1/6x=-13 | | 5x+6=26* | | 31x-22+25x=-115 | | 1.5x-11.25=12.75 | | -12+50×14=x | | 1x-11=6+4x | | -51-4x=12x3 | | -3y+5y=12 | | 8x+16x-9=6(4x+10) | | -7t=10+3t | | 25+8h-9+2h=166 | | 14x+17+19x=162 | | 4x+3(5)=19 | | -5+7(-6-2m)=-117 | | 84+10x=-12x+15 | | 2x+24=80 | | -16-1=m | | 10^3x-1=100 | | 23x=-5=21x+5 | | 0.5+12.3=7.1-1.1x | | 2(2x+33)=x+30 | | -2u+-6=3u+19 | | 5x+4-2x=9+2x-5 | | 13^-7x=5^(-x+9) | | 4(2y-9)+3y=19 | | 51+2x=8x-8 | | 2x-4=1x-10 | | 32=4x^2-8x | | -10x+8=88 | | -(n+1)-5(3-n)=1+n=1-3n | | 1.15x+.65=8.9 | | 18x-17=7x-50 |

Equations solver categories