If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+28=16k
We move all terms to the left:
k2+28-(16k)=0
We add all the numbers together, and all the variables
k^2-16k+28=0
a = 1; b = -16; c = +28;
Δ = b2-4ac
Δ = -162-4·1·28
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-12}{2*1}=\frac{4}{2} =2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+12}{2*1}=\frac{28}{2} =14 $
| 62x+59x=907.5 | | 6^4y=8 | | 2x2+7=11 | | 20x-13=-52 | | (2/3)*x+6=-12 | | 58x+56x=741 | | (3x×7)+100=180 | | (3x×7)+100=90 | | |x+5|=12 | | 10=p+7 | | n^2+6n+20=0 | | (1-3a)1.2+8.9=14.9 | | -98=-3(1+6x)-x | | 4x+7+6x+3=180 | | 4x+7+6x+3x=180 | | F(2)=2^2-4x+5 | | 8+1=7m-9 | | 4p^2=12p=9 | | 7x=8x+11 | | -34=4c+3(c-2) | | 1=6+3v+2v | | ⅔x+6=-12 | | 6g+2=1/2(12g+8) | | -4(2m+9)+44=6 | | -14(3p-10)=18 | | 3(2x+3)=2(x+8) | | 2+2=-2(9x-2) | | F(x)=-6+7 | | 3=x/8-4 | | (Y-5)^2=2y^2-11y+5 | | 2.5mm=4 | | -15+21=-3(x+4) |