If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+3=22
We move all terms to the left:
k2+3-(22)=0
We add all the numbers together, and all the variables
k^2-19=0
a = 1; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·1·(-19)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*1}=\frac{0-2\sqrt{19}}{2} =-\frac{2\sqrt{19}}{2} =-\sqrt{19} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*1}=\frac{0+2\sqrt{19}}{2} =\frac{2\sqrt{19}}{2} =\sqrt{19} $
| 6d+4=34 | | x+4+4x+1=7 | | -4+5x=-39 | | -2w+6=-5w | | 4x+52=8x−10∘ | | 0=8z−8z | | s-24=-8 | | 4z-z-3=3z+2 | | 5-4(8x+3)=153 | | 3(-5x-4)=10 | | 3x-8=2x+21 | | 7x-3=12x+12 | | 7=x+22/4 | | r-1+ -3=-6 | | -8x+5=25 | | 15.75x+0.05=16.53x+0.13 | | x/6-0.5=3 | | H=-16t^2+5t+52 | | 1,250x+27.50=1,400x+20 | | 5=(2-4b)×5 | | q/2-2=2 | | 7x-(3x+5)-8=1/2(9x+20)-7x+5 | | 2/3x+2=4x-1/2 | | 20.5=-15.5+(-3.6)+1.8x | | q3− 2=2 | | 4n+2(3n-2)=26 | | 0=16t^2+8t+34 | | 6-32+t=76t= | | 8−2h=4 | | -(x+10)=-(x+2) | | X+25=40x= | | 4x-x=8-8+3x |