k2+4k-32=0

Simple and best practice solution for k2+4k-32=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k2+4k-32=0 equation:



k2+4k-32=0
We add all the numbers together, and all the variables
k^2+4k-32=0
a = 1; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·1·(-32)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*1}=\frac{-16}{2} =-8 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 8m-7m=15 | | 16q-15q=20 | | y-2/3=1/2 | | 3m-12m=16 | | 2h+h=17 | | 10-3=4x-4 | | F(-4)=-2x+9 | | 3y²+20y+20=0 | | x/4+12=23 | | -4u-13=-7u-7 | | 6(2x-1)-4x=10 | | 6x²-4xx=5 | | 3x-10=2(x-6) | | -3(h−10)=6 | | 14=2(z+2) | | 6x²-4x(x=5) | | v+23=1 | | 1.5j+j+(15+j)=190 | | 6x+44=8x-14 | | 5(x+4)=-3x+28 | | 2x+7+10x=21 | | 15^x=1+14x | | 5x+4+8x-7=360 | | -34=7z+10z | | 1/6+1/5+1/4+1/3+2/3+3/4+4/5+5/6=y | | 18+7x−12+5x= | | -3=-2(u-3)-17 | | -15x-2x+7+10x=21 | | -26=2x=-39=9x | | 5x-8/3=2x+9/7 | | 2=-3x=35 | | (4y+14)+(7y+1)=180 |

Equations solver categories