If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+6=18
We move all terms to the left:
k2+6-(18)=0
We add all the numbers together, and all the variables
k^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| 8b+4b−9b=9 | | -1x=-22 | | 9+x^2=21 | | 4z-6=35 | | 13r+2r+5r−19r=6 | | 16/y=(-4) | | 18d+5d-22d=13 | | 5(x+3+2)=2x+5 | | -4x+2(8x+1)=+-(-2x+-10) | | 1x/6+4=15 | | 9w-2w+W-6w+3w=10 | | 10h−9h−h+2h=2 | | 2r+3r+3r+r-6r=18 | | 3x-12/3+2+3(x-1)=13 | | 3x+5=1x+15 | | 12u-10u-2u+4u=16 | | 17=1x/3 | | (9x+6)=90 | | 5j-j+4j+4j-4j=8 | | 6x+24x+6=x=2 | | x2+-42x+13=0 | | 5a+6a-5a=18 | | 21y+3(60+-7y)=180 | | 38+4x/6=17 | | x=35/28 | | 9t-8t=16 | | -711/x=-79 | | 17n-12n=20 | | 5x+2=-6-3x | | 15x=31=61 | | 3v-2v=7 | | 27x+2.2=24x-2.6 |