If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+8k+5=0
We add all the numbers together, and all the variables
k^2+8k+5=0
a = 1; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·1·5
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{11}}{2*1}=\frac{-8-2\sqrt{11}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{11}}{2*1}=\frac{-8+2\sqrt{11}}{2} $
| -3x-4=-18-x | | 5(x-3)-3=17 | | 0.5+y=1.9 | | a/4+4=5 | | 3(2x-1)=6x-3-2(2-4x) | | x=2*180-x | | x(1)=1 | | x+2/5=-2 | | 4y+5y=0 | | x=2*90-x | | 3-3n=5-n | | 3(3x-3)=5x-5 | | 46=-2(m-3) | | 1n=25+0.05n | | 10x-8=11x+16 | | 90/p-2=p-1 | | 12+2k=-5k-23 | | 1n=25(0.05n)+200 | | -8d+7=2d+47 | | 3(2y+1)=-3y+82) | | 5/x+9=12 | | 3x+7=-x-29 | | 2(x-3)+8=3-7 | | 29.30=6g+3.62 | | 3q+3=8q-22 | | X+1/2x+1/4x=63 | | 1n=25+0.05n-200 | | x+21=4x-30 | | 6y-4=5y+9 | | 431.2=826.4d=2910.4 | | 8x-4-3x=11 | | (3a-4)=(6a+7) |